D EVELOPMENT AND AI'I’L1CATION OF COMPOSITE
COMPLEXITYMODELS AND A RELATIVE COMPI . EXITY
METRIC IN A SOFTWARE MAINTENANCE ENVIRONMENT

Jonathan M. Hops
Radio Frequency and Microwave Subsystems (1P1.)
California Institute of Technology, Pasadcna, California, 91109

Joseph S. Sherif
Software Product Assurance (J}'].)
California institute of Technology, Pasadena, Cdifornia, 91109
and
California State University, Fullerton, California, 92634

ABSTRACT

A great deal of effort is now being devotedto the study, analysis, prediction and
minimization of software maintenance cxpected cost, long before software is delivered to users or
customers. It hat] been estimated that, on the average, the effort spent on software maintecnance iS
as costly as the effort spent on all software costs. Software design methods should be the starting
point to aid in alleviating the problems of software maintenance complexity and high costs. Two
aspects of maintenance deserve attention: (1)protocols for locating defects, and rectifying them,
and ensuring that no ncw defects are introduced in the development phase of the software process,

and (2)protocols for modification, enhancement and upgrading.

This paper focuses on the second aspect - mainly, the development of protocols for helping
increase the quality and reduce the costs associated with modifications, enhancements, and r
upgrades of existing software. ‘I’his \Sl\??l,ly developed parsimonious models and a relative

complexity metric for complexity measurement of software that were used to rank the modules in -

the system, relative to each other. Some success was achieved in using the models and relative

metric to identify maintenance prone modules.

1. Introduction

A. Project Objectives

The primary objective of this study was to determine whether software metrics
could help guide our efforts in the development and maintenance of the real-time embedded
systems that wc develop for NASA’s Deep Space Network. Generadly, the systems
developed control receivers, transmitters, exciters, and signal paths through the
communication hardware. The most common programming language in our systemsiis, ,
1'1 /M for Intcl 8080, 8086, and 80286 microprocessors; ’and the systems range in sizc
from 20,000 to 100,000 Non-Commented I.ines Of Code (NC] .OC). Approximately 65%
of the funding received in our environment is dedicated towards extending the life span of
the previously developed systems; of this, 15% is spent on finding and fixing defects,

while 8570 is for adding automation features, adding capabilitics, and increasing capacity.

Our efforts have been successful in that the life span of our systems arc four to
eight years, and incrcasing. As support for new spacecraft becomes necessary, these older
systems arc being used in new ways, thereby increasing the importance of quality, defect
free and cost effective enhancements to the. software. Protocols and guidance for locating
and rectifying defects in the software sustaining environment were dcemed critical
especially with the added complications that the people maintaining the systems arc not the
people who originally developed them and that there is little or no confidence in the

software documentation.

Specifically, wc were looking for ways to identify which modules should be re-
enginecred, and which modules would need extra developmentand test time in order to
maintain. The problems we face in our environment are quite common in the industry.
Software maintenance cost is about two to four times the original development cost, [Bochm
[3], Glass [13], Fairley [10], and Munson and Khoshgoftoar [9]. Charette [5] cmp}\msizcs
the fact that 60 to 80 percent of the total softwarc costs arc rc.late.ct to maintenance. This

willlikely remain so for the indefinite future [7,11, 24].

Figure 1 shows the initial cost breakdown in developing a new project
(unfortunately with maintenance costs hidden) and Figure 2 shows the costs of software
during its life cycle as discussed by Zelkowitz [34]. Software maintenance is not what
people think it is: Software maintenance actually encompasses fixing software errors in
addition to software enhancements and adding ncw functions to existing systems, system
conversion, training anti supporting users, and improving systems performance [31-33].
Error correction, which is often perceived as the substance of maintcnancc/,is only a small
part of the software maintenance cffort, Dekleva [8], and Bochm and Papaccio [4]. Table 1
shows the. distribution of the average time spent on various maintenance tasks for four
years as reported by l.ents and Swanson [19]. Note that functional enhancement
constitutes the major portion of the time spent on software maintenance. Charctte [5]
discusses another reason why the cost of software is so high and cites some statistics as
reported by the Comptroller General [6] and shown in Table 2. It is reported that only two
percent of the software contracted for could work on delivery, three percent could work
after some rework, forty-five percent was delivered but never successfully put to usc,
twenty percent was used but either was extensively reworked or abandoned, and thirty

percent was paid for but never delivered.

FFor the project described here.in, we took these steps:
1) determine what the literature suggests,
2) develop a course_of action to be tried on onc of our operational
systems hopefully as a representative of all the others;

3) perform the steps and analyze the results.

The actions and results of taking each of these steps arc described below.

B.

Suggestions from Literature and Course of Action

One of the earlier studics encountered pertaining to our objectives was undertaken
by Shen, Yu, Thebaut and Paulsen [27]. This study assessed the potential usefulness of
product and process metrics in identifying components of the system which were most
likely to contain errors. Their goal was to establish an empirical basis for the usc of
objective criteriain developing strategies for the alocation of testing effort in the software
maintenance environment. It was found that the number of unique operands, as defined by
Halstead [14], was the best predictor of problem reports on modules that were reported
after the initial delivery. Additionally,simple mc.tries related to the number of unique
operands, such asthe cyclomatic complexity (defined by McCabe [20]), aso performed
well. Shen et. al., concluded that these metrics arc useful in finding error prone modules at

an early stage.

Kafura and Reddy [1 7], in 1987, published the results of using software
complexity metrics during the software maintenance phase of a system, They related seven
separate metrics to the experience of maintenance activities on medium size systems. Two
of the results reported were that the overall complexity of a system grows with time and
that the individual complexity scores of the software modules agree well with the expert

opinions of the programmers. Their conclusion was that metrics could form the control

clement in a formal maintenance method.

Harrison and Cook [15, 16] discusses the decision, frequently encountered by
software maintenance personnel, of whether 10 make an isolated change in a module or to
totally redesign and rewrite the module anew. They developed an objective decision rule
to identify modules which should bc rewritten rather than modified. This decision rule was
whether the total change in 1 lalstead Software Scicnee Volume metric exceeded a threshold
value. This threshold value seemsto be subjective since it depends upon the risk-taking
propensity and cxperience of the decision maker and must be tuned for a particular

environment.

I.ennselius, Wohlin and Vrana 18] discuss the possibility of using complexity
metrics to identify error-prone modules, and thus maintenance-prone modules. They
suggest that a module whose complexity lies at least one standard deviation above the
acceptable mean of complexity of the project may bc considered as a maintenance-prone
module. The authors however, emphasize that metrics cannot replace the decision-making

process of software managers.

Rodriguez and Tsai [23] usc discriminant analysis to develop a methodology for the
evaluation of software metrics. The authors suggest that when classifying units of
software as either complex or normal, more attention is usually paid to the complex group
to either redesign it or test it more thoroughly. ‘1'heir methodology is based on the
assumption of normal distribution and homogeneity of variances of the two groups. The
authors considercd 13 metrics depicting Halstead's Software Science Metrics, McCabe
Complexit y Metrics, and Non-Commented Lines of Code (N CIL.OC) metrics. They

concluded that these metrics arc correlated.

Stalhane [29] discusses how to estimate the number of defects in a software unit
from various software metrics, and how to estimate the reliability of the same software.
The author also reaches the conclusion that complexity increases as the size of code
increases. Stalhanc asserts that misunderstanding the specifications will increase with the
specification complexity and that complexity may be transferred to the code and thus lead to
maintenance-prone complex code and complex modules.

Munson and Khoshgoftoar [21] employ factor analytic techniques to reduce the
dimensionality of the complexity problem space to produce a set of reduced metrics. The
reduced complexity metrics arc subscquently combined into asingle relative complexity
measure for the purpose of comparing and classifying programs, in particular, the relative
complexity metric can be seen to represent the complexity of a particular software module at
aparticular level of system release.. The authors investigate McCabe Complexity Metrics,
Halstcad Software Scicnce Metiics and Non-Commented l.ines of Code (NCI.0C)

Metrics. The comparison of complexity is again of arelative and subjective nature.

Binder and Poore [2] investigated tbc possibility of including the number of
comments in the code as a variable indetermining the quality of the code. They assert that
comments only contribute to quality when they arc nceded and meaningful. The authors
suggest a software quality measure called the “1.11-ratio” defined as the ratio of the number
of Operators to the sum of the number of operands and number of comments. The authors
agree that their experiments with the "1LB-ratio" nced additional work and refinement since
including the concept of mecaningful comments in the formula seems to be problematic and

subjective at best.

The suggestions that were deduced from these sources arc:

1) An estimate of errors and reliability can be determined from software product

metrics [20, 27, 2.9];

2) Software. product metrics could be used to find error prone modules and could
form the control element in a formal software maintenance mcthodology [15-

18];

3) The software product metrics that may be considered include all of Halstead's
Software Science h4c.tries, McCabe's Complexity Mectric[14, 23, 27], and the
Non-Clomment Sourcel.incs of Code (NC1.0C) [21];

4) Factor analysis can be used to identify those software measures that arc highly
and significantly rclated to all other measures, This economy of description will
facilitate the analysis of software complexity [21],

5) Comments in the code contribute to the quality of software [2].

We therefore set forth on the following course:

1) Determine the 1 lalstead Software Science, McCabe Complexity, NCI.OC, and

| .B-Ratio from sequential releases of a representative software system;

2) Perform factor analysis on the metrics from the software modules to determine

the unique dimensions 1epresented by the metrics;

3) I'repose amodel to calculate arelative metric; and

4) Determine if this metric can identify maintenance prone modules in the software
by using the mean plus one standard deviation as the relative metric cutoff

value.

11. Method, Analysis and Results

A. Representative System and Metrics Collection

A. 1. Nature of Software

Woc anal yzed the source programin the Very 1 .ong Baseline Interferometry (VI .BI)
Receiver Controller Software System (VRC), using factor analysis for sixteen software
measures. The source program is a real-time embedded system in the recciver-exciter
subsystem of NASA’s (National Aeronautics and Space Administration) 1)cep Space
Network (I1SN). It serves as a communication interface to VI.BI subsystems and
configures and monitors the status of the Narrow Channel Bandwidth VI .Bl Receiver
Assembly. Three releases of the. system software were analyzed: OP-B (222 modules),
OP-C (224 modules), and a draft version of OP-ID (235 modules), These were used as a
representative maintenance project in this study. The source code for these three releases
was originally written in P1 /M, but was late.r converted to C using P1.C86 conversion

program (from Micro-Processor Scrvices).

A. 2. Software Metrics and Measures.

Software Metrics are quantitative measures of certain characteristics of a
development project that can be valuable management and engineering tools. Software
metrics can be used to achieve various project-specific results such as: Predicting source-
codc complexity at the design phase; monitoring and controlling software reliability and
functionality, predicting cost and schedule; and identifying high risk modules, in a software

project [28].

10.
11.
12.
13.
14.

15.
16.

The sixteen software measures that were used to analyze the VI.BI Receiver Controller

(VRC) software arc:
ni

ny

N]

N2

Z>

B

VG

VG2

1.(K

B/C

<>

Sp

NCI .0C -
1.B-Ratio -

number of unique operators

number of unique operands

number of total opc.raters

number of total operands

length (N1 4 N2)

estimated length = [n j(log2(n1))+n2(log2 (n2))]
volume = N *log2 (n) = (N1 + N2) log2(n] + nyp).
effort = V/[(2/n1) * (n2/N2)]

McCabe Cyclomatic Complexity (number of decisions -t 1)
extended complexity (decisions + ANDs 4 ORs -t 1)
lines of code (includes blank and comment lines)
number of blank lines -1 number of comment lincs
number of executable semi-colons

average maximum lines between variable references

Non commented lines of code=1.0C - B/C

[N1/(N2+ We)]

The first eight measures belong to the }lalstead software science family of software

complexity measures. Halstead [14] uses a series of soflware science equations to measure

the complexity of a program based on the lexical counts of symbols used. Generally, the

measurements arc made for each module, and the total measurements of the modules

const itute the measurement of the program. Halstead's metrics become available onl y after

the coding is done, and therefore can be of usc only during the testing and maintenance

phases. Although Halstead's metrics are useful in determining the complexity of

programs, their weaknesses arc that they do not measure control flow complexity, and have

little predictive value.

Measures number nine andten,i.e. VG1land VG2 belong to McCabe and were
adapted from the mathematical concepts of graph theory. McCabe cyclomatic complexity
metric VG 1is ameasure of the maximum number of linearly independent circuits in a
program control graph. The primary purpose of this metric is to identify software modules
that will bc difficult to test or maintain as explained by McCabe [20]. The value of McCabe
metric is available only after the detailed design is done. Although McCabe metric is very
uscful at measuring control flow complexity, its weakness is that it is not sensitive to
program size; for example, if programs of different size arc composed exclusively of

scquential statements, then they may have the same cyclomatic number.

Mecasures number eleven to fifteen deal with the size of the program or number of
lines. Although many researchers do not find this measure as appcaling, Bochm [3] points
.out that no other metric has a clear advantage over NC1.OC as a metric. It is easy to
measure, conceptually familiar to software developers, and it is used in most productivity

databases and cost estimation models.

Measure number sixteen, the "ILB-Ratio"; isdefined by Binder and Poore [2] as the
ratio of the number of operators to the sum of the number of operands and number of
comments. It appears to capturc the idea of distinguishing between meaningful comments
in the code and just commentsin genera. The weakness Of this metric is its reliance on
defining the number of meaningful comments which seems to be more subjective than

quantitative.

10

B.

Anaysis of’ Data, Models, and Validation

The sixteen software measures of the three releases of the (VRC) code; (OP-B, OP-
C and draft OP-D) were analyzed using Factor Analysis, Correlation, Analysis of Variance
and Regression Analysis. Table 3 shows the number of modules and the mean value per
module for each of the sixteen measures. 'T'ables 4-6 show the correlation matrix of the
sixteen measures for the three1eleases. The data show a high degree of corrclation.
Except for the measure “1 .B-Ratio", the remaining fifteen measures arc highl y correlated. It
can be seen that the Halstead volume metric (V), McCabe Cyclometric Complexity metric
(VG 1) and NCI.0C metric arc nhighly and significantly correlated while the 1.B-Ratio metric
isnot. ‘] hese results agree with what other researchers have found, Ramamurthy and
Meclton [22], Gill and Kemerer [12], Samadzadeh and Nandakumar [25], Basili and

Hutchins [1], Evangelist {9] and Kafura and Reddy [17].

The factor analysis matrix is shown in I'able 7. All measures cxcept the 1.B-Ratio
are. loaded on factor 1, and thus there is no cross-loading, This is a desired result, since
cross-loading on many factors makes the interpretation of the result ambiguous. The
Analysis of Variance of the three sets of rc.leases did not show any significant difference at
the level of significance of 0.05. This means that on the average the values of say, the
McCabe Cyclomatic Complexity Metric (VG 1) of the three releases arc not significantly

different at Alphaof 5%. The sameisalso true for the other fifteen measures.

Regression Analysis had been used to develop models of relationships of the most
interrelatcd measures. These arc: The Halstead Volume Metric (V), the McCabe

Cyclomatic Metric (VG 1), and the Non Cornmented Lines of Code (NCL.OC) metric, as

discussed next.

11

B.1.¥actor Analysis Discussion

Three releases of software were analyzed by factor analysis to show the existence
of meaningful relationships among known software complexity measures. The analysis
shows the number of factors where software complexity measures tend to load high or
low, and also the percentage of the. variability cxplained by each factor. This rescarch aso
shows the matrix of correl ation summarizing the relat ionships among the sixteen software

complexity measures for each release.

Factor analysis of the three rc.leases of software had shown that the first fifteen
measures of complexity arc closely related to some measure of similarity and arc in
consequence al interrelated. However, the sixtcenth complexity measure (1.13-Ratio) does
not seem to be typical of the other fifteen measures, and thusit is unlike the rest of the data
set. The three releases show two factors that concisely state the pattern of relationships
within the sixteen measures. however, measures one to fifteen load most strongly on the
first factor with explained variability of 90% to91 %, while the second factor displays less
interesting patterns with loading of 9% to 10%. Factor analysis had also shown that three
complexity measures: the McCabe Cyclomatic Complexity Metric (VG 1), the Halstead
Volume Metric (V), and (NCI.OC) arc highly and strongly related. Thercforc, in order to
achicve an economy of description, these threc measures arc considered to give a strong

similarity and representation of all the fifteen measure.s.

The correlation matrix for each release of the softwarc aso shows that the first

fifteen complexity measures arc related, while the 1.B-Ratio measure is not related or

interrelated to any of the other fifteen measures.

Analysis of variance does not show any significant difference between the three

12

releases at the level of significance of 5%. this means that as the software evolves through
its releases, the interrelationships between the complexity measures seem to be preserved.
However wce should note that without normalization to size, adding on to a program will
make a more complex program. Thissecms to agree with what other researchers have
found as discussed by Valett and McGarry [30], Harrison and Cook [15] and

Schneidewind [26].

Since factor analysis techniques showed that the first fiftcen software measures are
closely related to some measure of similarity, and since three of these measures: McCabe
Cyclomatic Complexity Metric (VG 1), Halstead Volume Metric (V), and NCI.OC metric
arc highly and significantly related, they are considered to give a strong similarity and
representation of all fifteen measures. This economy of description made it appealing to
develop a set of parsimonious models for software complexity mecasurements using data
from the three software releases. The five composite models together with their coefficient

‘of determination (R”) are as follows:

1. <VG1> = 1.48 + 0.005(V), R?=96%
2. <VG1> = 0510+ 0.136 (NCLOC), R2=96%
3.<VGy>= 0.786 + 0.001 3(V) 4 0.0976 (NCLOC), R?=96%

-206+ 29.5(NCL.OC), R2=99%
-210 +8.7(VG1) -t 28.3(NCLOC), R2=999%,

4. <v>

5. <v>

"

Statistical analysis, model back testing, and model testing with independent segments of
software are used for validation of the coniposite models and ascertaining their degrec of accuracy.
The developed models had shown a high degree of accuracy in predicting software complexity and
thus they can serve as baseline for other software projects in identifying software modules with

high complexity (maintenance prone) so that actions can be taken before their release to users.

13

B.2. Back Testing of Models

‘The five composite complexity models shown above were checked with actual data from

the three releases, OP-13, OP-C and OP-I). Table 8 and Figure 3 sShow the actual average values of

the dependent variables (VG1) and values predicted by the first three models. ‘I’ able 9 and Figure 4

show the actual average valucs of (V) and valucs predicted by models 4 and 5. It can be seen that

the difference in predicting (VG 1) by the first three composite models ranges from 3.2% to 10.6%

below actual average value of (VG1) as calculated by McCabe Cyclomatic Complexity metric.

Also, the difference in predicting (V) by models four and five ranges from 1.2% to 1.3% above

act ual average value of (V) as calculated by Halstcad's Volume. metric.

B. 3. Testing The Five Composite Models by External Check

The five composite complexity models Were tested against fOUr independent
segments of software with characteristics as shown in ‘1’ able 10. A sample calculation of
actual average values of (VG 1) ant] values predicted by Model1 for the four segments of
softwarc isshown in ‘I’able 11. The summary of the actual grand average values of (VG 1)
and (V) and their values as predicted by Models 1 ,2,3 and Models 4 and S respectively for
the four segments of software is shown in Table 12, and 13 and Figures 5 and 6. It can be
seen that the difference in predicting (VG 1) by the first three composite models ranges from
17.3% below to 0.7% above actual average value of (VG). Also, the difference in
predicting (V) by models four and five is 9,7% above actua avc.rage value of (V) for the

four segments of software.

Parsimonious Model and Representative System

Since the five complexity models developed in this study show direct relationships
between (VG1) and (V) and also (NCLOC); we had chosen the third model

14

<VG] > =0.786 + 0.001 3(V) + 0.0976(NC1.OC)

asarepresentative model for estimating the value of (VG 1) given the measured values of

(V) and (NCL.OC).

C. 1.Development of the Relative Complexity Meftric

Wc propose to captuare the total complexity of a program based on its control flow
complexity, the lexical counts of symbols used, andthe program sire. Inessence, a
complexity metric thataccounts for a program total complexity due to volume and control
flow andnormalized by the number of lines of code would present a relative complexity
metric that is more useful to consider for detecting maintenance-prone programs. The
relative complexity metric (RCM) will be derived for each module from the measured value
of (V), the estimated value of (VG 1) from model 3, and normalized by the module lines of
code. The RCM for module is:

VG, +V

RCM); = (-0t Yy
(RCM)i= Seroc

15

C. 2. Analysis of The Three Releases Using The Relative Complexity Metric

(RCM)
The Relative Complexity Metric (RCM) was used to analyze the modules of the

three releases as shown below.

Relative Complexity
Release | Total# Of | Total Max Min Median Mean std. Dev.
Modules —_ -
OP-B 222. 2799 45 0.4 10.9 12.6 10.0
or-C 224 2837 45 .04 10.9 12.7 9.6
01-1) 235 3470 49 -0.4 12.2 14.8 11.3

Note that, as reported by Kafura and Reddy [17], the Relative Complexity Metric (RCM)

has grown with each release from a 2799 total in OP-B to a 3470 total in the draft of OP-DD.

Using the criterion of The mean relative. complexity value plus onc standard deviation asa

cut-off value for acceptable modules, we can identify those modules that can be considered as

outliers, or mai ntenance-prone modules. Wc obt ain the following for the three releases:

Release Total #of (RCM) Cutoff #of Modules 9% Modules over
Modules Value Exceeding (RCM) Cutoff
(RCM) Cutoff Value
Valuc
OP-B 222 22..6 33.0 15.0
or-C 224 . 223 ___ 36.0 16.0
oPr-D 235 __ 21 _ 35.0 15.0

16

in order to determine whether the modules above the cutoff value were more at risk
(o be modified for enhancement or fixes than modules below the cutoff value, the
transitions between the re.leases were examined. The results appear in the table below. Of
the 33 modules over the cutoff value of RCM in 01'-11, 40% were actualy modified in
order to implement OP-C. Of the 36 modulcs in OP-C over OP-C's RCM cutoff value,

SO% were actual] y modified to implement the draft version of OP-D.

Transit ion # of Modules (RCM) Cutoff % of Modificd % of all Modules
Modified Value Modules Over Over Cutoff
Cutoff Value Value that were
Actually Modified

1rom OP-Bto 13 22.6 46 40
or-C

1rom-OP-C 1o 38 22.3 47 50
Oor-bH

Although the cutoff value secms to evenly divide the modules that were actually
modified, the modules over the cutoff value for each releasc were more likel y (0 be changed
than the modules below the cutoff value. The relative complexity metric (RCM) was

therefore able to identify maintenance prone modules.

111. Discussion and Conclusion

Given that a metric which measures software complexity s} loulcl prove to be a useful

predictor of software maintenance costs, it is recommended that modules that show a high order of

17

complexity within arelcasc be looked upon as modules with propensity to become maintenance
prone after rcleasc and delivery to users. It is imperative that a maintenance prone module be
improved, enhanced, or simplified into two or more modules before final delivery. ‘1 he composite
complexity models and the relative complexity metric developed in this study can be considered as
a baseline for comparison with other projects and may serve as a set point for simplifying and

reducing complexity of developed software.

Acknowledgment

This research was carricd out by the Jet Propulsion I.aboratory, California Institute of
Technology under contract with the National Aeronautics and Space Administration. The authors
would like to express their sincere thanks to Dr. William J. Hurd, Deputy Manager, and Paul A.
Willis; Supervisor, Radio Frequency and Microwave Subsystems Section, Dr. Robert C.
Tausworthe; Chief Technologist, Inforination Systems Division, and Dr. Donald S. Remer,
Telecommunications and Data Acquisition Planning for comments and suggestions that greatly

improved this report.

18

[1]

[2]

[3]

[4]

[5]

(0]

[7]

[8]

[9]

[10]
[11]

[12]

REFERENCES

V. R. Basili and D. 1. Hutchins, “An Empirical Study of a Synthetic Complexity

FFamily," IEEE Trans. Software Lingincering, 9, pp. 664-672, 1983

I..11. Binder andJ. 11. Poore, "Field Experiments with 1 .ocal Software Quality

hach-its,” Software Practice and Experience, 20, pp. 631-647, 1990

N. Y., 1986
Comptroller General, Contracting For_ Computer Software Devel opment, General

Accounting Office Report, GAO, FGMSD-80-4, 1979

B. Curtis, S. Sheppard, P. Milliman, M. Borstand ‘I’. lL.ove, "Mecasuring the

Psychological Complexity of Software Maintenance “I’asks With The J lalstead and
McCabe Metrics,” JEEE Trans. Software Engineering, 5, pp. 96-104, 1979

S. Dekleva, “Software Maintenance: Any News Besides The Name,” The Software
Practitioner, 3, pp. 5-8, 1993

W. M. Evangelist, “Software Complexity Metric Sensitivity to Program Structure

Rules,” J. of Systems and Software, 3, pp. 2.31-243, 1983

R. L. Fairley, Software Engincering Concepts, McGraw Hill, New York, N. Y., 1985

V. R. Gibson and J. A. Senn, "SystemStructure and Software Maintenance

Performance,” Communications ACM, 32, pp. 347-358, 1989

G. K. Gill and C. F. Kemerer, "Cyclomatic Complexity Density and Software

Maintenance Productivity," IEE} Trans. Software Engincering, 17, pp. 1284-1288,

1991

19

[13]

[14]

[19]

[16]

[17]

[18]

(19]

[20]

[21]

[2.2]

[23]

[24]

R. 1.. Glass, Software Mainten ance Handbook, Englewood Cliffs, N, J., Prentice 1 1a]],

1981

M. }alstead, Elements of Software Science, New York, N.Y. Elsevier North Holland,
Inc., 1977.
W, arrison and C. Cook, “A Micro/Macro Measure of Software complexity,” The

Journal of Systems and_Software, 7, pp. 213--219, 1987

W.Harri son and C.Cook, Insights on Improving The Maintenance Process Through

Software Mcasuret nents. Report Naval Ocean Systems Center, TR 90-4, N66001-87-1)-

0136, 1990.

D. Kafura and G. R. Reddy, "The Use of Software Complexity Metrics in Software
Maintenance,” 1HEE Trans. Software Eingineering, 13, pp. 335-343, 1987

B. l.cennselius C. Wohlin and C. Vrana, "Software Metrics: Fault Content Estimation and
Software Process Control,” Microprocessors and Microsystems, 11, pp. 365-375, 1987.
B. I'. Lientz and L. B. Swanson, Softwarc Maintenance Management, Reading, MA.
“Addison-Wesley, 1980.

‘J.J McCabe, “A complexity Measure,” I1EEE Trans. Software Enginecring, 2, pp.
308-32.0, 1976.

C. Munson, and T.M. Khoshgoftaar, “Application of a Relative Complexity Metric For

Software Project Management,” Journal of Systems and Software, 12, pp. 283-291,

1990

B.Ramamurthy and A, Melton, “A Synthesis of Software Sciences Measures and the

Cyclomatic Number," IEEE ‘Jrans. .S~fl.ware Enginecring, 14, pp. 1116-1121, 1988

V. Rodriguez, and W. T.Tsai, "Evaluation of Software Metrics Using Discriminant
Analysis” The Eleventh Ann. Int. Computer Software and Applications Conf., pp. 245-
251, 1987.

H. D. Rombach, “A Controlled Experiment On The impact of Software Structure on

Maintainability," 1EEE Trans. Software Engincering, 13, pp. 344-354, 1987

20

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

M. H. Samadzadeh and K. Nandakumar, “A Study of Software Metrics, ” J.

Systems Software, 16, pp. 229-234, 1991

N.F.Schneidewind, "Mecthodology For Validating Software Metrics,” 1EEE Trans.
Software Eng.18, pp. 410-422, 1992,

V. Y. Shen, T. Yu, Sm. M. Thebaut and 1.. R. Paulsen, “ldentifying llrror-Prone
Software-An Empirical Study," IEEE Trans. S/W Eng., 11, pp. 317-323, 1985

Y. S. Sherif, Ii. Ng and J. Steinbacher,” Computer Software Development: Quality

Attributes, Measurements and Metrics,” Naval Research lL.ogistics, 35, pp. 425-436,

1988

1. Stalhane, A Discussion of Software. Mctrics As A Mcan Yor Software Reliability
Evaluation. Report # 1’B89-210322, U.S. Dept. of Commerce, National Technical
information Service, 1988.

J.D. Valett and V. E. McGarry, “A Summary of Software Measurement Experiences in
the Software Enginecring1laboratory, ” The Journal of System _and Software, 9, pp.
137-148, 1989

1. Vessey and R. Weber, "Some I *actors Affecting Program Maintenance: An Empirical

Study,"” Communications ACM, 26, 2, pp. 128-134, 1983

S. Wake, and S. Henry, “A Model Based on Software Quality Factors Which Predicts

Maintainability,” Proceedings, Conference on Software Maintenance, Phoenix, Arizona,

Ott. 24, 1988, pp. 382-387, 198§.
S. S Yau and J. S. Collofello, “Sonic Stability Measures For Software Maintenance,”

IEEE Trans. Software Engineering, 6, pp. S4S-552., 1980

M. V. Zelkowitz, A. C. Shaw and J. . Grannon, Principles of Software Engineering

21

Specification

Requirements
10%

Integration
Test
20%

Module
Test
25%

Figure 1. The initial Cost Breakdown in Developing

Code 7%

Design 5%

Specifications 3% -

Requirements 3%

Figure 2. The Cost of’ Software During its Life Cycle

Module Test 8% Integration Test 7%
\

Maintenance 67%

22

a New Project

Table 1. Percentage of Time Spent On Various Maintenance Tasks

% Time Spent

Maintenance “I’asks 1977 1985 1987 1990
Enhancements 59 44 41 43
Corrections 22 15 18 16
Supporting Users NA 21 12 12
Recngineering NA NA 10 9
Adapt at ions 6 8 9 8
Documentation 6 NA 5 6
Tuning 4 NA 3 5
Evaluating Requests NA 8 NA NA
Other 3 4 2]

23

‘1’able 2. Comptroller General Statistics on Delivered Software

Quality of Software Percentage (%)) of

Delivered Software Delivered
1 Could work 011 delivery 2
2. Could work after some rework 3
3. Never successfully put to usc 45
4, Iixtensivel y reworked 20
iR Useless 30
Total 100

24

Table 3. 01’-11, OP-C and OFP-D Modules and Mean Value of the Sixteen
Mecasures

Measure or-B OP-C Qr-D
(222 Modules) (224 Modules) (23s Modules)

Mean Mean Mean

1. nl 12 12 13
2.112 12 12 15
3 N] 70 75 87
4. N2 42 44 52
5 N 113 119 140
6. J 103 110 126
7.V 704 721 844
8. E 53781 58198 61715
9. VGI 4 4 5
10, VG2 5 4 5
11. 1.0C 73 78 83
12. B/C 43 46 49
13. <> 12 13 15
14. Sp 5 5 6
15. NC1.0C 30 31 34
16. 1.B-Ratio 1 l l

25

Table 4. Correlation Matrix of Sixteen Measures For OP-BR

Pearwnn Correlation Coetficients / Proh > TR under 11o: RhomQ /N = 272

1 B2 Nt N '
2 N Y v E vG! VG2 Loc ey cR N
077205 CRr sp NLOC 1.og
n 1.00000
s et . g;;ﬂz . 0(35)9,055 . 0? 70054 072123 065058 054810 074991 086794 071722 055043 0TAIN 071629 0.37017 o
0 0 o 0001 o000 0.0001 0.0001 w1 oo v 10 001464
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 06075
n 077205 1.00000 091155 093063 002232 096!
00001 o0 0.0001 0 000} o 00.01 ? . 000916 22 ;)09';)2,73 oog(;&]ls 0.93249 071144 0.87705 0.520)2 09364 062822 o1 porTTe
. . . . 0.000! 00001 0.000! 0.0001 0.0001 00001 o0 05755
Nt 070872 Q911545 OO0 0 9RSE0 0.99R0 7
L RS0 89801 0 991) 0.9R175 . 7
0.0001 0.0001 00 00001 0. 001 0.0001 0.0001 000?,3'." g%&j?m o%;\’.G]G Oanane o_s'mn Vot 62622 0 ey o orasy
. 000! . ¢t 0.0001 0.(KI! 000! 0 000! 00MI o
N2 0 49055
093063 ©.985280 1 00000 099437 09324} 097163 099750 0.99624 071274 0.1 'Y 0.56571 095695 !
00001 00001 0.0001 0.0 0.0001 0.000! o pomr o Cone 06! 197 0.97494 .no79
0 4 00 0001 00001 0000 0.000! IR 0o o3 B % %)
N 070054 092231 D.99801 099437 1.00000 e A
o'or;o N 22 . . 09U o92277 0929V 09227 0.72116 0.902s0 05733 096022 062291 0osie 0orey
000! L0001 0.000! 0.0001 0.0 0.0001 0 000! 0.’¢cCC! 0.0001 0.0001 0.000t 0.0001 0.0001 0.0001 0.0001 0!}
NV -Of.‘(,);é!!z: O%ggzsz . ¢ '90"7?3 09324} 092114 100000 0.9074! 0.79853 D.76636 0.64927 0.85885 0.57506 0.83160 047706 0.99127 003949
. 0001 0.000t 0.0001 0.0001 0.0 0.0001 0.0001 0.000! 0.000! 0.000! 00001 0.000! 0.000! 0.0001 0.6600
v 0.65052 091273 £9%176 097161 0O9F277 0907¢! 100000 0.95253 0.9123] 019787 QA6 047D 091201 059t nagnas o nrasns,
001 0umr 000 00001 0000 O onot 00 N0 00001 001 000D 0.0008 0N noat aoont negy
" 0 m;\o UTRLIE 09NN 0 wWNSe NOI9IS 09851 n9sls) 100000 099454 060025 0.78596 037656 0.85849 049117 D.0150§ 0 a4l
FELM 0ot [ENLE] Uty 0 Ot 0 Oty 00 0 o1 0.0001 ¢ 000t 0.00n! Q.0001 Q.00 .00 0.5510
Vit RISTA] 081247 09y BRULN 02t g kY TN 0 29454 1 OO0y 072159 0.26029 048382 N.92587 0.76176 0.9550 n.01807
R ? 1 N . 0 00001 (64N 198 0.7e¢
oamt poogt Qo 00w 00001 00N ool oLt 00 00T 00001 0.00M XX T 0.0001 y
7¢ 7 12942 0.7074% 058510 079272 002007
72116 064077 079787 060025 0T3S 100000 0 67SIL 032942 5 2 2
VGl 056794 07344 071636 07114 0 1 oot 00 0.0001 00001 00001 00001 00001 07638
00001 00001 00001 00001 0000t 0goor 0000r 00001 0 : ' A
d 7 8608 7831 100000 0.8122' 0.9014% QASA06 0.92971 015500
. M1 090280 085885 096609 0.78506 0.%60%9 0675
toc 075723 087705 0.2928% 091 000t 000l 00M1 Qw1 00 0.0001 0. DtO1 00001 0.0201
cOMr 00001 0000 00O 0.0001 0000
7 g 1221 100000 0.56699 0.43851 0.56954 D 11047
1 051773 0.575% 047319 037656 048152 012942 0.212 1¢ 0 n
nc 059041 058032 0.51917 0 5657 ' 000t 00001 0.0001 0.0 0.0001 0.0001 0.0001 0.0
oLt 00001 00001 00001 00001 0000r oW 00001 0 : ' : '
20748 090148 056680 1000 0.75125 095988 0011
CR 076131 09t 095712 095695 0.96022 O RRIN 0932031 0.85869 %:0?'553 ogom 0.0001 Q.01 0.0 Dol 0.0001 D.R44S
0.000! 0 000! 0.0001 00uo1 | 0.0001 000N 00wt 0000t 0.000! : :
, 17 n$es39 065606 043891 0.75125 100000 0.68219 0 OlOA0
sp 071629 063632 062622 0.61197 06220 047706 Qsmn01 049117 0(3;.1 3 i r\oooy‘ e seon oo o001 08752
oot 0000t 00001 0000t 00001 00! 0.0001 0001 0.000 Bl .
1 100000 - D0SAS
ja54 DOTI 089127 0oesS 091505 095500 078112 092972 0.56954 0.9878% 042217 1.00000 00566
NLOC 07017 091476 09RO 97 0001 00001 00! 0.0001 0001 0.000! oot oot 00 002
gl oot 00001 00001 om0 0.0 0 6001 -)
. 017 09 DWW 00131) 00IGD D DNSLA 1.00000
1Lun 00166 003778 001953 000079 oot 7”)1"’"" O 0(:’0023 O;)R’i:aqm 0706.?;) nrgn‘yﬁ 0 rernt ' 084458 n 8782 0932 0o
E o 007 05795 073 0.9906 O R61T 0 6ruXx 0 R28) 0.55$:

26

FrLRG [SYTAN

[AY XS LOES 0
CUG00 861200 vi0 00

olird 0 MU

als (96 LNLO O Pl GORS U
U0 BUNIO O 8000 ¢r6i0¢ LLOuh 0

00 0000 0000 00T 10600 06000 10000 10000 iL000 10066 10CO0 10000 10300 10000 10000
L 88LISG I8ISEG 9ii890 BLIS6C GUISED SISSE0 LTIC60 BISBE0 T6ITEC §9886'0 SILLOO OI6860 II6060 SGIZLO DOTON

SCRLG 0000 G0 10000 (0000 1000 40000 10000 10000 10000 10000 10000 10000 {0000 10000 10000
820U B6LISG 00000 08990 COULYO PBE0SD IRO99G TivS90 L9ZCLO 6OI9VO LIviGO pIZOST L6i670 S6LEYO (L0950 LZ859°C gs

L5 G000 50 GG0G 10000 10000 10000 L0000 L0000 060G 160600 0000 10000 10060 100070
P oG GUSED Oulou | OS9G OOZIED £9RI6T OUZ6N 0iSKS0 FRIVED Syi960 104560 LOTS60 SSTS6O O81S60 9Z9LL0 A0
VOO 00 1000 0 HGG0°0 L0000 {000 0 10000 1000°0 160G 0 {000 :.“C,cé .
AT 030 SITiYvo L976S 0 iOvu o TESYI0 €8T99D 6ORLYD STIEV0 LI8I90 i
G L o 1Gl0 00 0000 16600 10000 15000 0000 10000 10G0G 000 10660 000G 3
GUSLLOT SLISH0 e86GSO 00Zi60 LLILBU 00000 SGi6ST GOTESG ITESRO (97260 pSv680 BSLE60 LI9T6T RBiC60 BLI6R0 BT D0

G560 10060 16500 10000 00 1000 (6000 16000 16600 1000 00GG 10000 1606G 10000

GOYSU €986 SITI9U 9LI680 00000 650630 TOIZ&O COBRRO ISEZ60 BS9ANO fLIE6O i96TRG TOLSLD IDA

LOGHG WSO 10000 0010000 0000 000)6 0000 10000 10600
NECE PLEGYU 60TE¥0 699660 GUG0T LRLORO TUSTHL 6880 0OSTEG 999680 68vI&0 6(6(BO LLESLd (DA

LIS o VLGS 10000 10006 40000 40000 10000
el NI 00000« ®9wo6' G BITI8D 068C60 6{6060 TS0 ivSALO 3
OO0 10660 18000 000G 000G 16000 6o 10000 000G 10000 10000 10000 i00GD
CUiyr s wgarb UTLYU LHZZOG TOTT6O0 TCSZ6HG RYURDH'0 GOCOO L tOBIGD 015660 0BiB6O SUL6&0 Si6060 8r8990 A
WELOU WG GGG (0000 10000 000G 10000 10000 100070 00 16000 000G 10000 Q000G Q0000
THOGO 282260 LTvi90 76990 vSr630 £6838C (980 BZZiSC €08i60 00000l L9626'C 6(8160 STST6ET LSvEEC 26530 N
LG IGO0 0650 {6000 1060°0 10000 10000 10000 16600 10000 60 10000C 10000 10000 10000
{6000 898980 rZTUSG 2990 §SLL60 TSE6G Q0SL6T 068E6'G 0iS66G L96Z6C 0GO0GL 9TL66'0 TI866T S8STE0 1BLOLO N
96880 1G30G 100 000G 10000 10600 0000 10000 10600 10000 10000 GO 006G IGO0 o000
(LLL0G BULLET LSUGv U 6GSL9G " LTIL60 BS9G80 999680 6T6LED 08IBGG GBI60 9TLL6'C 00000 L L9S8AD v9LTED j IN
€120 16600 000D 1000 10000 10000 10600 000G 1000G 16600 10000 10000 100G 00 10000 10000
urO0 0Z6VHG SulGro §8T560 EIBR90 BBITOD LZE60 68pL6U TOIS6U SELOLD STOZE0 TTB660 L9S860 QOO0O0T LwLI6D PSHOLD IN
06LLG 10OG0 H0OG0 10000 10000 1C0WO 10000 10000 10000 10600 L0000 1000'G 00 16000 00 10000
SS8I00- 226060 CLUYSO 031860 STTEYO SETEYO 196£30 6T6L80 IWSSLO SiG06G LS¥BG0 SSSTEO v9LZE0 LelI&T OGOOUT €OSGLO 4]
LOEST 16000 LGAGG 10000 L6600 10600 1000G 16300 G000 L6000 L0NOG U000 oa
GO SIELY YI9LLG LTBZY0 LBYRL0 TOLSLO LLESLO CIEeSD HRGOY O PBCGLG E0YRY D vSRLL O L0S6L0 OO0 i
Y6l 200N s iD o4 D07 oA DA 3 A N N IN N 24 4G

PIZ = N/ OF O 0L SIRU] < GO0 [Siudidij 200 UOLE{IL0T) UGS.ED]

3-JO 30, SOINSEa USAXIS JO XL UOHE[SII0) "G d]qel

] 31800 GOSL0 6eLL0 100060 LE00 89iL0 L6990 85060 €9 0 68180 608L°0 NGO O colLh BN DR L6210
. G

80000 SINIGO sorvv O 6L 6L{T00 TS6Z0G 09LxG 0 Pe9CO0 2061070 #8070 CSLmi XSyl GL60 0 6RO il

QUG

Gu 6000 1000 000D 10000 {GU0O 10000 000G 1000 OO0 00 40000 10000
, | Ci96°G S6TY90 (0Lv&0 Tr6E60 SSCRG0 0OL060 08160 0SST&O S06LS0 Z6L9&T 0i6LE0 Bi90A0 9iTILO DOVIAN
GOSLG 6600 00000 40000 10000 000G 10000 (00G0 10000 16006 10000 10060 10060
80T U PO Z0OK0 SIv6LG G6VBL'O ilvEr0 €iL8S0 T€8L90 60ZI90 S67:90 CL{IY0 vSBTY0 B9IOLD
WELLG OG G000 10000 10000 10000 10600 {0060 10000 000U G000 10000 10000
LSO L8000 WOUZ60 8TLZ6C 1STZ50 L9ZE6D iSBE6D BEIS6T TISRG 6ILy50 600€6T §wLLLG 10
: - 00 06 40000 000 L6600 16000 w0000 10000 1000 10600 16400 000G 10030
VLot Seluv G LD LiS190 UOBOGTE 6T8980 60TYST COLSS O SRRISO 09SiG 0 906990 Zviwg0 LOISYO 06HIO0 STIL9O [¥ES90 ol
eor 1060°0 GO 10000 0000 G000 40000 10000 1000 10000 10000 1G0OG 10GOD .
Cod 6IHOR O GO00OT £0F9R0 OURORG 0irZHO 108060 L6060 16£360 (0iT60 YsBL6D ivawg0 €8¥SL0 D01
LG WOLY i 000 G WO0O . L0GO0 10000 Ego.o 0000 40000 100D 10000 L0000
6Ll BivOL0 66T L0198 TLOTe6D 98I %N Y80 69198 888°0 085980 GrO680 GELIBO LISOLC tOA
G000 L0000 0G0 0000 1000 00 IGO0 10000 {0000 10060 10000 16000
N N OG0 YOLSSU 9Ur9NG LOTh60 Goh0i RO pLSHNO SOHSEO L98880 rI{98Q 152040 DA
Y 0000 b 060D GO 16000 (0000 10000 10000 000G 10000 10000
N : Sran 6irZ80 OOCOG G Sigcen OIRUBT0 TERTET 96680 CO0R6U OO 1GDRSO 4
L Lsuo WOO00 0660 0000 0000 00 10000 10060 L0000 L0600 10060 §0000
FRYCUG 08060 &PISNG 2LSSHO STNSOO 000G 650780 9Tx660 9LISED 09660 9Li0ST 116590 A
GRED L0000 G000 10600 10000 10000 16300 10000 10000 00 10000 10000 10600 10000 - 10600
CUSIUGTOSI00 CURLYL ESHTEU 900990 120060 697980 SOSSBT &iB0SG 630260 00000 SBICED w260 I60CLO (€860 10rC8D N
IGO0G 000G 10000 1000 1DO0'0 000G 10000 10000 00 10000 10000 10000 10000
Csb0 Tvav9U o 1OTT6T v9BR80 (9S850 TC8260 9Ipee0 S8IT60 00000l Olfe60 {3660 607260 OL¥69O N
" TG WOOO 16000 10000 10GO'C L0000 10600 1000 L0000 10000 00 10660 10000 10000 ‘
Lo TINFGO LOZSYG 60iT60 O6SYY 0 rI990 9rG030 YLiSeG vLEZ60 OIC6LG Q0000L pSSNGG LTLI&D 8TILY0 IN
L b& G HRI0 6060 10600 100070 {0000 10000 L0000 (000D 10000 000G 10000 00 (0000 10000
RNV 0Z00 CORTI0 9SRI60 059680 LRGSO €O0¥60 0C9660 TSOE6'0 €ZR660 pSSRA0 O0GOUTT RILI60 126690 IN
LG WOG 10000 100We 10000 10000 0000 10600 1000 (0060 10000 10000 10000 00 10000
U000 0 BS8IY0 0 GUOG0 STiLYD (VBHS0 65LI80 IS0 1LL9LO 9060 1LL86'C 607Z60 LZLT&O BICIED GUOODT BGLYLO i
LRLTU D G000 oo 000 10060 10000 0000 10000 10000 (000G 10000 1GOO0 §00000 10000 00
PRVTIEILG BEGLG welgL0 ipEsG CRESLG LIGOL0 ISTOLG ISORSD 1i6Sy 0 OpCE0 OLR69 0 BIOLYG LTLG90 86LYLT GOOGG I 14

i S DION O DA i A N N N [49

Sl N /o=y

(-dO 10 SSINSEAI USSIXIS JO XMEJN UOHRJILIGD "9 9]qTL

Table 7. The Factor Matrix For The Sixteen Measures of OP-C, OP-B, OP-D.

Measure ~ OPB orP-C P-D

Factor 1 "Factor 2 Factor 1 Factor 2 Factor 1 Factor 2

1. n 78 -.17 19 12 18 -.17
2. m, 94 -. 02 .94 -. 02 .93 -. 03
3. N 97 .10 98 , 83 97 .08
4, N, 97 .06 97 .04 .96 -. 05
5 N .98 .09 .98 .07 97 07
6. N* 91 -.01 .96 -.00 .96 -.01
7. V 96 14 97 09 96 09
8. E .89 .22 .90 15 .88 15
9. VG, 94 .09 .95 .08 .93 10
10. VG, 77 12 95 07 .93 .10
11. 1L.OC 94 -. 25 .96 - 1T .95 -.19
12. B/C 61 -.64 12 -.50 10 -.53
13. <;> .97 .03 97 .04 97 .06
14. SP 10 -. 05 .60 -.01 12 .04
15. NCLOC .98 .05 .98 .05 .98 .05
16. LB-Ratio -. 03 .83 -.01 .92 -.02 .90
Percentage of 90 10 91 9 91 9

explained variability

29

‘Jable 8. Summary of Actual Average Values of (VGy1) and Values Predicted by

Models 1, 2, and 3.

(V) Value Delta Error(%)
Model |?2c.lease Actual.. (A) Predicted(”) (A)-(P) Delta = (A)
1 OP-B 4.45 5.00 -0.55 -12.40
or-C 4,53 5.09 -0.56 -12.40
oP-D 5.30 5,70 -0.40 -7.50
Grand Average 4.76 5.26 -0.50 -10.60
2. OPr-B 4,45 4.59 -0.14 -3.10
or-C 4.53 4.86 -0.33 -7.30
OP-D 5.30 5.27 -0.03 0.60
Grand Avc.rage 4.76 491 -0.15 -3,10
3. OP-B 4,45 4.62 -0.17 -3.80
OP-C 4.53 4.84 -0.31 -6.80
OP-D 5.30 5.30 0.00 0.00
Grand Average 4,76 4.92 -0.16 -3.40

30

Table 9. Summary of Actual Average Values of (V) and Vaues Predicted by

Models 4 and S.

(V) Value Delta Frror(%)
Mode] Relcase Actual (A) Predicted(P) (A)-(P) Delta = (A)

4. OP-B 704 679 +25 +3.6
or-C 722 738 -16 -2,2

or-D 845 826 +19 -1-2.2

Grand Average 7 5 748 49 +1.2
5. Or-B 704 678 +26 +3.7
or-C 722 735 -13 -1.8

01'-11 845 826 +19 +2.2

Grand Average 757 746 -10 +1.3

31

‘1’able JO. Characteristics of Four independent Segments of Software

Actual Average Value

Segment Number of VGjy v NC1.0C
Number Modules
1. 16 16.4 3343 102
2. 16 17.9 4016 139
3. SO 8.16 1823 64
4, 55 11.10 2212 71

32

Table 11. Sample Calculation of Actual Average Values of (VG1) and Values

Predicted by Model 1¥or Segments 1 to 4.

(V) Value Delta Lirror(%)
Model Segment Actual(A) Predicted(P) (A)-(P) Delta = (A)
1. 1 16.40 18.19 -1.79 -10.9
2 17.90 21. S6 -3.66 -20.4
3 S.16 10. 59 -2.03 -24.4
4 11.10 12. 54 -1.44 -13.0
Grand Average 13.39 15.72 -2.33 -17.3

33

Table 12.

Summary of Actual Grand Average Values of (VG1) and Values

Predicted by Models 1, 2 and3 For Segments 1 to 4.

VGj Grand Average Value Della

Krror(%)

Model Segment Actual(A) Predicted(P) (A)-(P) Delta = (A)
1. 1to4 13.39 ls. s7 -2.33 -17.3
2. 1to 4 13.39 13.31 +0.08 +0.6
3. lto4 13.39 13.48 -0.09 +0.7

34

Table 13. Summary of Actual Grand Average Values of (V) and Values Predicted
by Models 4 and S ¥or Segments 1 to 4.
VGj.Grand Average Value _ Delta Error(%)
Model Segment Actual(A) Predicted(P) (A)-(P) Delta+(A)
4. lto4 2848 2570 +278 +9.7
5. 1tod 2848 2571 +277 +9.7

35

" /) Actual Predicted
vele - " | 140 [|49
"
2 / / %
Ei f;:;e 3. Actual Average Val ulgsogfd(ve ;) and \;al ues Predicted
- /] Actua Predicted
) 7 /T e Y ?ﬁ 746
600 Z Z
o 7
300 % Z
2 7

Model
Figure 4. Actual Average Values of (V) and Values Predicted

by Models 4 and s.

36

2 .
/] Actua [] Predicted
VCD 45 1S.72
| 13-39/ 13.39//_ 1331 13.39%'_— 13.48
o 0
9 7 7
Z % Z
Al 91 0
;;;g;;r;e]s ?ctt:jélg?ve;a%e szf(d:}af SL\;G 1 z an? \Qf lm Predicted by
- /] Actual [Predicted
V) 300(
- //F_ w0 /“_ 2570
2000 Z Z
=
=
1000 / /
-

=N

Mode]
Figure 6. Actual Average Values of (V) and Values Predicted
by Models 4 and 5 for Independent Segments of Software.

37

